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Skin-friction drag reduction in turbulent boundary layer flow of inhomogeneous
polymer solutions is investigated using direct numerical simulations. A continuum
constitutive model (FENE-P) accounting for the effects of polymer microstructure
and concentration is used to describe the effect of viscoelasticity. The evolution of wall
friction along the streamwise direction is a function of the dynamics of the polymer
distribution in the boundary layer. It is observed that polymer transport decreases
drag reduction downstream compared to the homogeneous case. The fluctuations
of polymer concentration are anti-correlated with those of the streamwise velocity.
Concentration is largest in the low-speed streaks. The physical process creating this
effect is primarily that of dilution of the high-speed streaks, where due to the local
turbulence structure the dispersion of polymer is strongest. Thus, the polymer-induced
drag reduction phenomenon is sustained primarily in the vicinity of the low-speed
streaks where the injected polymer additive is most effective.

1. Introduction
Skin-friction drag reduction by polymer additives in turbulent flows has received

great attention in the past few years. The renewed interest can be partly attributed
to the development of robust methods for direct numerical simulation (DNS) of vis-
coelastic turbulent flows. Most simulations have been performed in periodic channels
where the flow is internal and spatially stationary or for homogeneous turbulence
(see for example Dubief et al. (2004, 2005) and references therein). Recent work by
Dimitropoulos et al. (2005) has extended the study to developing external turbulent
flows, which are important in naval applications, where zero-pressure-gradient (ZPG)
turbulent boundary layer flow is frequently encountered. DNS of drag reduction in
homogeneous (constant polymer concentration) viscoelastic ZPG turbulent boundary
layers has shown that the development of turbulent structure, including vortex
damping, and polymer extension are asynchronous. The spatial evolution is a strong
function of polymer elasticity, expressed by the ratio of the relaxation time scale of the
molecules to the turbulent wall time scale. For large polymer elasticity drag reduction
of up to 60 % can be simulated within a downstream length equal to a few boundary
layer thicknesses. A quasi-steady region of drag reduction where the wall friction in
both Newtonian and viscoelastic flows evolves with the same rate can also be observed.
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All simulations of drag reduction so far have considered homogeneous viscoelastic
fluids, but it is of interest to better understand the effect of an inhomogeneous
introduction of polymer additives in a turbulent boundary layer. Inhomogeneous
turbulent boundary layers have been studied so far only through the use of simple
analytical models (Larson 2003). In addition, uncoupled studies of the effect of
drag reduction on the transport of a passive scalar have been performed recently
(Gupta, Sureshkumar & Khomami 2005). Simulation of flow of inhomogeneous
polymer solutions using full coupling between concentration and polymer stress in
the momentum equation has received little attention, due to the complexity of the
model equations for systems that are not dilute (Beris & Edwards 1994). For dilute
systems, work has been restricted to stability analysis of laminar viscometric flows,
such as Taylor–Couette flow (Apostolakis, Mavrantzas & Beris 2002). The present
investigation constitutes the first DNS of turbulent flow of inhomogeneous polymer
solutions. It is performed for a turbulent boundary layer and is designed to resemble
polymer injection experiments (White, Somandepalli & Mungal 2004) aiming to
understand how to optimize practical drag-reduction strategies.

2. Mathematical formulation
2.1. Model equations

Transport phenomena in inhomogeneous, dilute, isothermal and incompressible
polymer solutions can be described by a set of model equations derived from the
principles of continuum mechanics and non-equilibrium thermodynamics by using a
two-fluid Hamiltonian model. By considering a Warner spring force law and utilizing
the Peterlin approximation one can arrive at an extended FENE-P model that
incorporates concentration effects in a simplified manner (Beris & Edwards 1994;
Apostolakis et al. 2002).

Specifically, the momentum conservation and continuity equations have the form
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where ui represents the fluid velocity, p the pressure, xi the spatial coordinate, t the
time and τij the viscoelastic extra-stress tensor. The Reynolds number Reθ is defined
with the zero-shear kinematic viscosity of the solution (ν0) and β is the ratio of
zero-shear-rate solvent (µs) to solution viscosity (µ0). The velocity scale is the average
value of the streamwise velocity at the free stream, Uf s , and the length scale is the
momentum thickness, θ , at the inflow location (θin). We denotes the Weissenberg
number, which is equal to the product of the characteristic relaxation time of the
polymer (λ) and a characteristic flow shear rate (Uf s/θin).

The distribution of polymer in the flowing solution is described by the following
conservation equation:

∂n

∂t
+ ui
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∂xi

= −∂Ji

∂xi

, (2.3)

where n is the polymer concentration, expressed as a number density non-
dimensionalized with its value at the wall of the inflow plane. Note that the zero-shear
solution viscosity in β corresponds to n= 1.
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The polymer flux Ji includes both Fickian and stress-diffusion terms and is defined
as:

Ji = − 1

Pe

(
∂n

∂xi

− ∂τij

∂xj

)
. (2.4)

Pe is the Péclet number, defined as Pe = Ufsθin/D , where D is the translational
diffusivity of the polymer molecules in the solvent. The Schmidt number, Sc, expresses
the ratio of the zero-shear solution viscosity and the translational diffusivity of the
polymer so that Pe = ScReθ . Aqueous solutions of polymers used for drag-reduction
studies have Schmidt numbers that are O(105) (Beris & Edwards 1994; Apostolakis
et al. 2002). As a result, polymer transport is dominated by advection and in order
to improve numerical stability the stress-diffusion term is neglected, since it has a
secondary contribution for the flow conditions considered in this study. The Fickian
term is retained and is used in conjunction with the dynamic model for large-eddy
simulation (LES) (Pierce & Moin 2004) for providing an eddy diffusivity that
describes the small-scale transport behaviour at large Sc which cannot be resolved
by the computational mesh.

The viscoelastic contribution to the stress is a function of the fluid microstructure
and the local polymer concentration. For the FENE-P dumbbell model (Beris &
Edwards 1994) it has the form

τij = n

(
1

1 − ckk/L2
cij − δij

)
, (2.5)

where cij is the single-molecule conformation tensor, defined as the ensemble-averaged
dyad of the end-to-end distance of the polymer chain. The nonlinear entropic spring
force law corresponds to the pre-averaged Warner spring function, where L is the
maximum admissible polymer chain extension. Finally, δij denotes the Kronecker
delta.

The conformation tensor is coupled to the fluid velocity through an evolution
equation:
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where the right-hand side is a relaxation term and the left-hand side corresponds to
the upper-convected derivative, which ensures material reference frame objectivity. In
the context of the two-fluid Hamiltonian model (Apostolakis et al. 2002) the upper-
convected derivative is based on the polymer phase velocity, û, defined as the sum of
the solvent velocity and the differential velocity of the two components, which is a
function of the polymer flux:

ûk = uk + Jk/n. (2.7)

2.2. Numerical implementation

The mathematical model eqations are solved using an extension of the method
described in Dimitropoulos et al. (2005). The spatial discretization is a second-order
finite-volume scheme on a staggered grid, where the velocity variables are placed on
the cell edges, whereas the pressure, polymer number density and the conformation
tensor are located on the cell centres. High-order compact differencing schemes are
used for the divergence of the stress tensor entering the momentum equation and the
advection term in the evolution equation for the conformation tensor (Min, Yoo &
Choi 2001; Dubief et al. 2005). Local artificial dissipation (LAD) is used in the
evolution equation for the conformation tensor at all locations where cij loses
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positive-definiteness. In this work the coefficient of the LAD term, κ , is equal
to 1 and for CFL ≈ 0.15 affects less than 5% of the nodes. A second-order
iterative semi-implicit fractional step method, where the conformation tensor and
concentration are staggered in time with respect to the velocity and pressure is used
to integrate the equations in time, and a multigrid solver is used for the Poisson
equation for the pressure at each iteration (Pierce & Moin 2004).

The dynamic model for subgrid-scale variance and dissipation rate of a conserved
scalar is implemented identically to Pierce & Moin (2004). The dynamic model
provides closure for the smallest scales due to the large Sc, since the smallest scale
for the conserved scalar varies as ηKSc−1/2, where ηK is the Kolmogorov scale
(Batchelor 1959; Dubief et al. 2005). The concentration equation is integrated in time
using the second-order QUICK scheme as in Pierce & Moin (2004). The QUICK
scheme introduces a third-order dissipative error and can predict scalar values beyond
their bound limits, without affecting stability and accuracy. In a typical simulation
overshoots are encountered in 0.02 % and undershoots in 2 % of the nodes. Note that
values beyond the bounds are not used for computing the polymer stress, and the
bound limits are used instead. For the correction in the polymer phase velocity, the
logarithm of n is used to avoid singularities, along with a tolerance of 10−15 for very
small values of n to ensure zero flux correction in regions without polymer, typically
well-outside the concentration boundary layer.

The inflow boundary condition for the velocity is supplied from a Newtonian
simulation which uses an inflow profile constructed by recycling from a downstream
station. At the free stream (f s) a combination of Neumann and Dirichlet conditions
describing the growth of the boundary layer were used:

∂u

∂y
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∣∣∣∣
f s

,
∂w

∂y
= 0

∣∣∣∣
f s

, vf s = Uf s

∂δ∗ (x)
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, (2.8)

where u, v, w are streamwise, wall-normal and spanwise velocity components, Uf s

is the reference streamwise free-stream velocity, x, y are the streamwise and wall-
normal co-ordinates and δ∗ (x) is the displacement thickness. A convective boundary
condition is used at the outflow plane and no-slip is applied on the wall. For the
conformation tensor, one-sided conservative compact difference schemes are used to
compute derivatives in the streamwise and wall-normal boundaries. In addition, the
polymer is introduced under equilibrium conformation (polymer molecules under no
initial stress; not pre-stretched) at the inflow plane. The concentration inlet boundary
condition corresponds to a constant Gaussian profile that varies only in the wall-
normal direction:

ninflow = e−(y−a)2/b (2.9)

At the outflow and free-stream planes convective boundary conditions are applied in
order to remove the scalar from the computational domain (Pierce & Moin 2004).
Periodic conditions are applied to all variables in the spanwise direction, z.

3. Simulation conditions
We will focus on DNS of two cases of viscoelastic turbulent boundary layer flow,

comparing the inhomogeneous with the homogeneous case. The rheological paramet-
ers correspond to the high drag reduction regime (HDR) when used for simulations
with the homogeneous FENE-P model (Dimitropoulos et al. 2005). The maximum
extensibility, L, of the FENE-P spring is set to 100 and the solvent viscosity ratio,
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Figure 1. Resolvable passive scalar concentration field at different streamwise locations:
(a) mean, (b) root-mean-square fluctuations and streamwise advective mass flux. Filled symbols:
Sc = 1. Open symbols: Sc = 1000.

β , is equal to 0.9. The Weissenberg number (based on the Newtonian wall shear rate
at the inflow plane), Weτ , is equal to 50. The molecular Schmidt number considered
here is 1000 and stress diffusion can be neglected. The Reynolds number, Reθ , is
approximately 775 at the inflow plane. The Newtonian simulation providing inflow
data has Reθ = 670 at its inlet. The inflow profile (2.9) for the polymer number density
corresponds to a = 0 and b = θ2

in/3 and is practically zero beyond y/δ = 0.3. The size of
the computational domain is 168.4θin×24.5θin × 32.2θin. The grid size is 480 × 96 × 192
in the streamwise, wall-normal, and spanwise directions, respectively. The domain
length is approximately 19 inlet boundary layer thicknesses (δinlet ), where δ ≡ δ99.5. The
corresponding mesh spacing in wall units, which unless otherwise indicated are defined
with the inlet friction velocity, is 	x+ =13.2, 	y+ = (0.11−30.6) (a hyperbolic tangent
stretching function is used) and 	z+ =6.3, providing sufficient resolution for the cases
considered (Dubief et al. 2004). The simulations were carried out for approximately
4400 inertial units, defined with θin/Uf s , which was adequate for reaching a stationary
state and collecting statistics during the final two flow-through times of the simulation.

4. Passive scalar dispersion in a Newtonian turbulent boundary layer
Passive scalar dispersion in a Newtonian turbulent boundary layer is quite effective

even for lower Re than those considered here. Figures 1(a) and 1(b) show the mean
profiles, the root-mean-square fluctuations of the resolvable scalar concentration
and the variation of the streamwise advective mass flux for a DNS performed for
Reθ = 775 on the same computational domain and resolution as the viscoelastic case.
For Sc =1 DNS was used, whereas for Sc =1000 LES was used to model the subgrid-
scale terms in the scalar equation. Note that the LES model is limited to Sc = 1000
since beyond this value it is not possible to resolve the additional small scales of the
concentration field with the present mesh. Figure 1(a) shows that for Sc =1 the inflow
profile of the injected scalar relaxes rapidly within the relatively small streamwise
distance studied here, whereas the effect of the larger Sc is that the concentration
very close to the wall is larger and its profile sharper. In addition, figure 1(b)
shows that as the mass diffusivity decreases the fluctuations of the concentration
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Figure 2. Evolution of drag reduction along the length of the boundary layer.

and the streamwise advective mass flux are larger. For large Sc, the concentration
fluctuations show first a small shift of their peak to the wall, followed by a rapid
decrease to a form similar to that for low Sc. The streamwise advective mass flux
follows almost self-similar development like the mean profiles, and is dominated by
the near-wall dispersion. Since the largest value of Sc considered in this work is 1000,
and for polymers in aqueous solutions Sc = O(105) it is not possible to distinguish
transport differences due to variation in the mass diffusivity of specific molecules with
the present simulation conditions. However, the physical picture described with the
present model for the Newtonian case is clearly distinguishable from the viscoelastic
case presented below.

5. Comparison of inhomogeneous and homogeneous drag rduction
The predicted drag reduction along the length of the boundary layer is plotted in

figure 2. For both inhomogeneous and homogeneous (n= 1) cases drag reduction is
observed after an initial drag increase where the substantial stretching of polymer
after the inlet removes a large amount of energy from the Newtonian flow field, which
is redistributed downstream in the flow for drag reduction to occur (Dimitropoulos
et al. 2005; Dubief et al. 2004). As expected, the effects due to the viscoelasticity
in the inhomogeneous flow are stronger close to the inflow and are comparable to
the homogeneous case. At these locations the polymer concentration remains large
enough so that the two terms of the divergence of the viscoelastic extra stress for
the inhomogeneous case have a combined contribution comparable in magnitude
close to the wall to that of the homogeneous case. As we proceed downstream and
the polymer is depleted from the wall, the body forces due to the polymer decrease,
leading to a decrease in the observed drag reduction, which is approximately 10 %
smaller than the homogeneous case.

The mean streamwise velocity profile after an initial small drag increase shows
both the characteristic upward shift of the logarithmic law region compared to the
Newtonian case (inflow location) and a change in its slope (figure 3a). The main
difference compared to the homogeneous simulations (Dimitropoulos et al. 2005)
is that within the computational domain the slope and intercept change of the
logarithmic region are smaller and although the predicted drag reduction is less,
the decrease of its magnitude is not due to polymer elasticity as in LDR (low drag
reduction). The smaller drag reduction up to a given streamwise position is due
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Figure 3. (a) Average streamwise velocity and (b) root-mean-square fluctuations of streamwise
velocity along the length of the boundary layer. (1/0.41) ln(y+) + 5.2 is the logarithmic law
(dashed line) and 11.7 ln(y+) − 17 the maximum drag reduction asymptote (dot-dashed line).
The statistics are normalized with the local friction velocity. Open symbols: homogeneous
case, filled symbols: inhomogeneous case.

to homogenization of the polymer concentration by the turbulence. This is further
shown by the streamwise velocity fluctuations (figure 3b) that follow similar trends
and an increase in their magnitude downstream due to drag reduction decrease is not
observed within the computational domain. The development region of drag reduction
for inhomogeneous flows is now a function of both elasticity and concentration. As
observed in figure 2, drag reduction is smaller and tends to plateau further upstream
than in the homogeneous case owing to the decrease of concentration, and persists
throughout the remaining computational domain, an indication that although the
concentration decreases the polymer deformation remains large enough to sustain
vortex damping downstream. The lack of polymer beyond the logarithmic layer
(y/δ > 0.3) makes the transition from a viscoelastic to a Newtonian flow field the
only factor that can change the qualitative form of the velocity statistics. The small
differences between the homogeneous, inhomogeneous and Newtonian simulations
in the outer region confirm that the effect of additive transport is confined to the
near-wall region.

Figure 4 provides further evidence of the near-wall character of drag reduction and
shows the depletion of the polymer. The average concentration profile (figure 4a)
evolves downstream in a manner different to the case of passive scalar dispersion
in a Newtonian turbulent boundary layer (figure 1a). It is clear that the character
of dispersion is different and the efficiency of the flow in transporting the polymer
away from the wall is significantly decreased. The viscoelastic case shows that the
concentration profile becomes sharper due to the large Sc but also retains larger
values close to the wall. This slow decrease is indicative of the decrease of the
intensity of the wall-normal velocity fluctuations during drag reduction that contribute
most significantly to dispersion. The physical process is that the events generating
turbulence are less frequent and the streamwise vortices become weaker and larger,
losing some of their ability to promote transport in the wall-normal direction. As
a result, the rate of transport of the injected polymer away from the buffer layer
is reduced. This in turn corresponds to a lower rate of polymer additive transport
beyond the logarithmic layer, where the flow is increasingly Newtonian in character
and mixing is more efficient, resulting in decreased polymer depletion in addition to
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Figure 4. Resolvable polymer number density field at different streamwise locations:
(a) mean, (b) root-mean-square fluctuations and streamwise advective mass flux.

slower sharpening of the mean concentration profile. However, for both Newtonian
and viscoelastic flow, there is evidence of self-similar development, although the
functional form for each case is different. The evolution of the root-mean-square
fluctuations of the concentration (figure 4b) is consistent with the above physical
description. Comparison with the case of passive scalar in a Newtonian boundary
layer (figure 1b), reveals a significant persistence of the structure of the concentration
field for the viscoelastic case, where a slow shift of the profile peak towards the
wall and a significant decrease in magnitude for y/δ > 0.2 are observed. The form
of these concentration statistics suggests that the layer of polymer retained close to
the wall undergoes significant interaction with the near-wall structures even at large
distances downstream. The advective streamwise mass flux also plotted in figure 4(b)
develops in a similar way to drag reduction and the velocity fluctuations. There is
an initial decrease followed by a rapid increase and then a slower decrease as the
additive is mixed downstream. After the initial development region its magnitude
is larger than for Newtonian flow, corresponding to enhanced transport in the
streamwise direction, an observation consistent with experiment (Somandepalli 2006)
and uncoupled simulations (Gupta et al. 2005).

Larson (2003) proposed an analytic model of drag reduction in a turbulent
boundary layer, which predicts that maximum drag reduction (MDR) cannot be
sustained for a single injection of polymer. However, it does not include treatment
of the modified polymer transport in the near-wall region, which is important given
experiments (for example White et al. 2004) showing that HDR can be sustained for
significant distances downstream owing to the reduced transport of polymer away
from the wall. The present simulations have similar trends to experiment and provide
additional information reinforcing the conclusion that the driving force for polymer
transport is primarily affected by the near-wall dynamics and not the outer region.

The increase of the Newtonian character of the flow with distance from the wall
is evident from figure 5 where the amount of polymer deformation (the average of
the trace of the conformation tensor) is plotted for different streamwise locations.
In the inhomogeneous data, there is much larger extension beyond y/δ ≈ 0.3, which
is a result of the existence of regions with little polymer where drag reduction is
small and the flow field being closer to Newtonian. In such locations, where there
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is less damping of the flow, the relative intensity of the velocity gradient increases
resulting in the prediction of larger polymer extension by the evolution equation
for the single-molecule conformation tensor. The characteristic peak in the buffer
layer, which close to the inflow corresponds to the contribution of the streamwise
vortices (Dimitropoulos et al. 2005; Dubief et al. 2004) tends to move towards the
wall downstream as drag reduction increases and the contribution of the mean shear
becomes more important. However, in contrast to the homogeneous case the off-wall
peak is retained and the maximum extension does not shift to the wall. The form
of the statistics of the conformation indicate that they are affected by variations in
the spanwise direction, namely the existence of regions near the wall where there
are small amounts of polymer present. Experimental evidence (M. G. Mungal 2005,
personal communication) shows that the polymer additive resides in the low-speed
streaks. This effect is observed in the present simulations. Figure 6 shows the joint
probability distribution function (PDF) for the streamwise velocity and concentration
fluctuations at two streamwise locations and at a distance from the wall close to
the edge of the buffer layer. The (PDF) shows strong anti-correlation of streamwise
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velocity and concentration, which persists downstream owing to reduced mixing
observed in drag-reduced flow, a strong indication that the polymer resides in the
low-speed streaks. Therefore, since the events corresponding to large fluctuations of
polymer concentration are dominant in the low-speed streaks, it also follows that
most of the effective polymer is located there and thus injection efficiency is not
constant across the spanwise direction.

6. Conclusions
A method for direct numerical simulation of inhomogeneous viscoelastic turbulent

boundary layer flow has been developed and used to investigate drag reduction after
additive injection. It was observed that polymer mixing acts as a relaxation mechanism
for drag reduction. The effect of polymer depletion is not rapid, since the modified
structure of the turbulent flow field assists in retaining the additive in the near-wall
region. The development of drag reduction for inhomogeneous flows, in addition to
the elasticity and extensibility of the polymer molecules, depends on the evolution
of the near-wall concentration, which exhibits the development of a more persistent
thin layer next to the wall, enhanced advective transport in the streamwise direction
and additive segregation between the wall-layer streaks. The simulation predictions
for the interaction of polymer transport and drag reduction presented in this work
are in qualitative agreement with recent experimental observations.
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